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Irr Ct. 4, Place lussieu, Paris Cedex 05, France 
$ Landau Institute for Theoretical Physics, Academy of Sciences ofthe USSR, "I. Kossygina 
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Abstract. Conserved non-local 2, charges Q and 0 are defined through their action on 
asymptotic particle states. This action entails a non-trivial mprodud.  S-matrices invariant 
under these Z,  charger are explicitly found. They enjoy in addition P. C, J, crossing 
invariance and unitarity. The unitariration factors are calculated. Finally, we identify 
perturbed conformal field theories described by these factorized S-matrices. 

1. Introduction 

Perturbing conformal field theories (CFT) by relevant operators, one finds as a rule, 
massive quantum field theories (QFT). These QFT contain information about the scaling 
limit in the vicinity of the fixed point and in many important cases turn out to  be 
integrable theories possessing factorizable S-matrices [l,  21. 

Integrable QFT are characterized by the presence of conserved charges in an infinite 
number. These charges may be local or non-local in the basic fields. Local charges 
have integer (Lorentz) spin whereas non-local charges have often a non-integer spin. 

The conservation of a non-local charge Q imposes strong constraints on the 
S-matrix. That is, the requirement that Q has the same form on ingoing and outgoing 
particle states usually determines the S-matrix up to some free parameters (and CDD 
poles) [3]. In addition the whole set of non-local conserved charges constitute an 
infinite dimensional non-Abelian symmetry of Yang-Baxter type in the QFT [4]. In 
particular one finds the quantum group invariance as a limiting case [ 5 ] .  

The action of non-local charges on multiparticle states usually follows non-trivial 
coproduct rules [3,7]. In perturbed CFT, the study of non-local charges with fractional 
spin starts in [8] with the perturbed tricritical Ising and Z,-Potts models. 

non-ioca conserve~ ~rrargcr appcai L U  iriariy u i i i ~ i ~ i i i  ~ i i ~ i u i i c i ~  LJ- 1, .  rut ~narriprc, 
the E.-Toda QFT possess a pair of fermionic charges Q+ with spin*(n -% These 
anticommuting charges (Q+Q-= -Q-Q+) completely determine the S-matrix of the 
model as shown in [7]. (The parameter left free is a function of the coupling constant.) 

The purpose of this paper is to investigate Z,-conserved charges. We define them 
through 

.I- .---. _ I _ L  ----------- :__^____I :n  L---:"..r? 7 ,  E^ --..-..-,- 

QO = m.'QQ 

Q N  = P, Q" p, (1.1) 
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where P,, p* are ZNinvariant local integrals of motion with spin is and w =eZn'lN. 
The charges considered in [71 correspond to N = 2. Here we shall consider N odd, 
N 2 3 .  

We proceed as follows. Our one-particle states are of the form 10, e )  where v = 
0, 1, . . . , N - 1 mod N and 0 is the particle rapidity. The action of Q and 0 on them 
is as follows 

H J de Vega and V A Fateev 

Q ~ U ,  e ) = , i , d d e l ~ + i ,  e)  
(1.2) elu, e) = X , o - ' ( d + l ) c  ic--1,e) 

where I\# = ,,,UN ,.BIN, X - ,,,UN 
- d / N  

0 -  e and d an integer to be chosen later as d = 
N - 1/2. On two-particle states Q and 0 act following a non-trivial coproduct defined 
by equations (3.3). This coproduct and its n-particle generalization provides a rep- 
resentation of the ZN-charges (1.1) on asymptotic particle states. For even s, we 
introduce an extra quantum number E = *1 to allow P. and to be odd under charge 
conjugation. 

We find a ZNinvariant S-matrix with s = 1 requiring that Q and 0 to commute 
with the S-matrix. We also impose P, T, C and crossing invariance. The derivation of 
the S-matrix is given in section 4. Our solution can be written as 

(1.3) s:;:::(e) = s,,+,,,,,+,+(u,+u~, U ,  -v31 e )  
where 

N-l 

+(U, K ,  e ) = o d r K F N ( e )  z: W"mxm(e)xK_m(e) ( 1.4) 
m = o  

d = N - l /2  and FN(B)  is a unitarizing factor. In addition; we show in section 4 that 
this S-matrix is real analytic. S-matrices with s # 1 are obtained from the s = 1 solution 

for even s we introduce an extra quantum number E = f . Particularly interesting cases 
are s = N - 1 (model 11) and s = N - 2 (model I). We investigate that in some detail. 
The unitarizing factor for model I, FN(B), is explicitly found. It is given by  an infinite 
product of gamma functions (equations (3.46), (3.50) and (3.52)). For model 11, an 
extra quantum number E = + 1  is introduced to characterize the particles. The S-matrix 
is given explicitly in section 3 ((3.56)-(3.66)). We conjecture that the full mass spectrum 
of model I(I1) coincides with the B ( N - I ) 1 2 ( D N )  mass spectrum. Finally we investigate 
the perturbed CFT described by the QFT models I and 11. Both models turn out to be 
pairs of parafermionic CFT [8] perturbed by the operator 

( ! ,? ) - ( ! , 4 )byr~~~ i ! jn~  @+so,  %+os (.Nfie!divisib!cbys, ] S z S . N - l )  Inaddition, 

The parafermionic CFT is  a ZN (.&) modei in the case itii) with centrai charge 
CN=2(N-1)/(N+2)(C, ,=(2N-l) /N+1).  e l  and e !  are neutral fields (thermal 
operators) with conformal dimensions 

- 2  1 
D, = b --(model 11) 

l - N + l  D ,  = D, =- (model I )  
N + 2  

associated to each of the parafermionic CDT. 

Moreover, we identify the Z,-charges with the operator 

(1.6) 
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and JI; are the parafermionic fields associated to each of the cm, the fields 
are defined in [9] and c is a numerical constant. Equations (1.5) and (1.6) hold 

where 

in models I and 11. 

2. 2, Non-local charges and their associated S-matrix 

We consider two conserved non-local Z3 charges Q and Q with Lorentz spin-f acting 
on asymptotic particle states and satisfying the following relations 

Q'=P, Q 3 = P ,  QC? = o6Q (2.1) 

where o = e'""' and P,, p, are Z3-invariant local integrals of motion with spins s. 
They act as follows on one particle states ]U, 9) where U = -1,O. + I  (mod 3) and 9 in 
the particle rapidity, 

We assume the particle mass to be independent of U. 

Equations (2.1) hold if we choose, for example 

.ig = ( m  e')'/' ,ie = ( m  e-')'/'. (2.3) 

It means that we choose Q and Q to have (Lorentz) spin s =f  and -f ,  respectively. 
The action of Q and Q on two (or more) particle states is more subtle. There is a 

non-trivial coproduct rule that physically reflects the non-local character of these 
charges. We define 

Q I u I , ~ I ;  U Z ,  9 2 ) = A l W r ' l U l + l r  91; ~ ~ , 9 z ) + A 2 w - ~ ~ + ~ ~ 1 ~ 1 ,  91; U'+], 92) (2.4) 

Q ~ u I , 9 , ; u 2 ,  ~ 2 ) = ~ l w ~ ~ ~ u , - l , 9 l ; u z , 9 ~ ) + ~ ~ ~ ~ ~ ~ " ~ ~ u , , 9 , ; u 2 - l , 9 z ) .  (2.5) 

Here A , . 2 = A B , , i , ~ , . 2 ~ ~ 8 1 , 1 .  The phases wD' and o " 2  correspond to the action of Q 
and 6 on the particles 1 and 2 respectively. The phase o-*l in the second terms 
accounts for the non-trivial character of the coproduct. It is easy to check that (2.4)-(2.5) 
guarantee the validity of (2.1) on the two particle space. 

The action of Q and 0 on n-particle states (generalizing (2.4)-(2.5)) is as follows 

- 

where p= (U, ,  . . . , U " ) ,  8 =(el , .  . . , en), (T("= (uI,. . . , uj+l, ut+ 1, uj+,, . . . , U,,), and 

Let us now consider the S-matrix for the scattering of these particles. To begin 
p'"= ( U l , .  . . , U{- , ,  U( - 1, uj+, , . . . , un). 
with, the two-particle S-matrix 

s:::::C 9) (2.7) 
where 9 is the relative rapidity, vanishes unless uI + u2 = U, + U, (mod 3). Hence, we set 

s:;::(e) =L,+,,.,,+,d~,, U 2 3  uz-u319). (2.8) 
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Let us recall how PT, C, P and crossing invariance constrain the S-matrix: 

PT: S z g ( 8 )  = S2z(e)=MuT,,  uz, K 1.9) = a(u,+ K,  u2- K, - K  10) (2.9) 

(2.10) 

(2.11) 

c: s:;z(e) = s::;::z(e)*a(c,, u2, K I e )=  m ( - u l .  -uZ, - K  I e) 
P: s:;z(e) =sz:;(e)*a(ul,m2, K I @ =  do2 ,  uI. -KI e) 
crossing: 

S:;::( 8) = S:2::;(ir - B)*a(u,, u2, K I 0)  = a ( K  -u2, u2, U ,  +u2, j in-  e). (2.12) 

Imposing Q and 0 conservation yields further constraints on the S-matrix elements 
a(u,, uz, K18). That is, we require Q and 0 to have an identical form on both in 
and out states. We find in this way 

A ~ [ ~ ( u , ,  uZ, K I e)-w"I+"I-K du,, 0 2 + 1 ,  K + l l @ ) l  

m ( U l ,  u z ,  K + 1 I 0)  (2.13) --K = w  @ ( U l + l ,  u2, KI e ) - o - ~ + ~ ~ + '  

A2[o"'a(~l--l, U,, K + 1  10)-wK+K"2-" ' ~ ( u B ,  ~ 2 ,  K 1011 
- - w m , + K + l  a ( ~ , ,  u2, K +  1 I e ) - w r 2 - - l a ( ~ , ,  u2- I ,  K I e)  (2.14) 

where A =- = and 0 = 8, - O2 is the relative rapidity. 
Equations (2.13)-(2.14) have a solution of the form 

d.1, U * ,  KI @ ) = @ J ( U , + ~ z ,  KI 8). 

Equations (2.13)-(2.14) take then the following form 

(2.15) 

,$(U, K I e ) - w " - K + ( u -  1, K -11 e) 
=A2[w-K+(m-1, K I O ) - w v - ' + ( u ,  K - l l O ) ]  (2.16a) 

+(U, K 18) - W " ' ~ + ( U -  1, K +  1 )  0)  

=A2[WK+(u-1, KI O)-w-- '@J(u,  K+11 S)]. (2.166) 

Equation (2.166) follows from (2.16~1) through invariance (2.9). Therefore, it is 
enough to solve (2.16a). We do that by discrete Fourier transform 

+ ( u , K ) = o m K  I: w""+(a,K).  (2.17) 
==U,* 

We find from (2.16a) and (2.17) the simple recursion relation 

[ l  - A Z w K - " ] $ ( a ,  K )  = [w"-" -w2A2]$(a ,  K - 1) .  (2.18) 

Equation (2.18) allows $(a,+) and $(a,-) to be expressed in terms of $(a,O) for 
all U =0, *. Furthermore P-invariance (2.11) requires 

$(a, K ) = $ ( a - K , - K ) .  (2.19) 

That is 

$(O, -1 = $(+, +), S(0, +) = $(-, -) and $(+, 0) = $(-, 0). (2.20) 
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This completely fixes the solution $(a, K )  up to an overall multiplicative factor 
F ( 8 ) .  After some calculation, we find from equations (2.18)-(2.20) 

(2.21) 

+(O, 0) =T F ( 8 )  [ cosh(-) 8 + 4 r i  - 1 1 .  

Inserting (2.21) in (2.17) yields 

+(O, +I 8) = +(+, O l i ? r -  8) =iF(B) sinh (2.22) 

where F( O) = F ( i n  - 8). The rest of the amplitudes +(U, K I O )  follows through the 
symmetries (2.9)-(2.12), that is 

+ ( U , K ~ ~ ) = + ( U , - ~ I ~ ) = + ( - U , - K I ~ ) .  

@(U, K I e ) = 4 ( K ,  wlir-8) .  

In addition, crossing invariance holds 

(2.23) 

(2.24) 

One can check that the YB relations hold for our S-matrix. It is here a consequence 

Unitarity of the S-matrix imposes on the normalization factor F ( 8 ) :  
of the self-consistency of the Q, 0 algebra. 

In order to find F(O) ,  it is convenient to write it as 

where 

Using the identity 

(2.25) 

(2.26) 

(2.27) 

(2.28) 



2698 

where 

H J de Vega and V A Fateeu 

A minimal solution of equations (2.26) is given by the infinite product 

(2.29) 

(2.30) 

That is 

where z =  S/(2ni). 

zeros on the physical strip. 
It is easy to check that this infinite product converges and it is analytic and without 

Up to now we set the spin of Q and to be +f  and -4, respectively. In general 

a multiple of 3. This follows from the previous construction by rescaling e + se and 
o + os. The representation of Q and Q on asymptotic states will depend on whether 
s is even or odd. We know that Q' = P,, is a local integral of motion with spin s, % 
panty (-l)'+' and Z,-invariant. Therefore we need a new quantum number E (odd 
under %) when s is even. In this way Q' = P, will change sign under %. 

Further S-matrices can be obtained by rescaline 0 -+ 2fJ9 o -f o2 = a*: (That is taking 
the complex conjugate of the amplitude forms.) This changes the spin of Q' and 0' 
to s = 2 making them odd under %. 

Therefore, we introduce an extra quantum number E = fl .  That is, the one particle 
states are now I E ,  U, 8). The operator Q acts on them as follows 

we c2n cnnsider the i?!gebra (2.1) Fcr xcx=!cc-! cha:ges *,;h spin +s/3, -he:* s is no: 

(2.32) 

(2.33) 

and analogous formulae hold for 0. 
S-matrix to have the form 

The Z, and E-conservation and the invariance under Q and Q now constrain the 

s"'." E m . , , , : : , : : , : (e)=s, ,+, , , ,+ ,s , , , s . , .~+(U,+Uz,  U I - ~ ' ,  E i E Z l e ) .  (2.34) 

We have two sectors: one with E , E ~ = + ~  and another with E ~ E ~ = - ~ .  They are 

in  ihe E ,  

connected by crossing since particles and antiparticles have opposite values of E. 

= + i secior we set 

+(U, K, +I e) = $(U,  K I - 2 e ) ~ + ( e )  (2.35) 

where the C$(U,KI~O)=~~(U,K,  fI) /F( .9)  (see equations (2.22)) and F+(O)  is a nor- 
malization factor. 
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In the -1 sector we take 

+(U, K,  -IO)=G(u, K13mi-20)F_(8). (2.36) 

and under crossing 

(2.37) 

The amplitudes (2.35)-(2.36) are invariant under Q and 
symmetry: 

+(U, K,  +I 8) = +( K ,  U, - 1  im - 8). 
rt.e resu!ting amp!it?ldes c2n be summ2rized as fn!!ours 

+(O, 0, E I 0 )  = iF,( 8) [ E sinh (28 i iv )+ i f i ]  ~ 

(2.38) +(O, +, E I 8 )  = +(+, 0, E lim- 0) = -iEFz( 0 )  sinh 

+(+,+,EIB)=~EF.(B) 

where F+( 0 )  = F _ ( i m  - 8) are normalization factors. Unitarity constrains them to fulfil 

4 cosh28/3 
3 cosh2@ 

F+(B)F+(-O) =- 

4 sinh28/3 
3 sinh28 ' 

F_( e) F_( - e )  = - 
(2.39) 

(2.41) 

The minimal solution of equations (2.40) can be written as the infinite product 

:2.42: 

where z =  8/(3vi) 
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3. Z N  charges, their coproduct and the associated S-matrices 

We generalize in this section the construction of section 2 for Z, to ZN for odd N. 
We consider two Z, conserved charges Q and 0 fulfilling the algebra 

QQ = -wQQ Q N = P  QN=p (3.1) 

where o = e2si/N is a Nth root for unity. We use particle states lu, 0 )  where the 
representation of ZN is diagonai. 0 and 0 act on one-pariicie states as foiiows 

H J de Vega and V A Fateeo 

- 

QIU, e ) = ~ \ , ~ ~ " ( ~ + i ,  e )  
(3.20) 

Q I u ,  0) = igw-(d+l)P Iu-1, e)  
where U = 0 ,1 ,2 ,  . . . , N - 1 mod N, d is an integer to be determined below and 

(3.26) i , = ( m e  ) . 
That is, Q and Q have (Lorentz) spin 1/N. Representations of Q and Q having spin 
s/ N will be obtained below by changing w + w', 0 + set. 

As is easy to check, equations (3.1) hold for the one-particle representation (3.2). 
We define the action of Q and Q on two-particle states as follows 

-8  l / N  R I/N &,=(me ) 

~ ~ ~ , ~ ~ , ~ 2 ~ 2 ) = ~ l ~ d o ! ~ ~ , + ~ , ~ , , ~ ~ ,  ~ ~ ) + ? ~ ~ ~ d " z - " ~ I -  , " I ,  Q " I , - z  - ~ L I  ' I, r ? ~ \  "2, 

(3.3) 
Qlu,e1, uze2) =il-w-(d+l)" q ~ , -  1, el,  ~ze2)+ i20 - (d+1)"~ -"  ~ l U t , e , , ~ z - i ,  ez). 

We check from (3.2) and (3.3) that equations (3.1) hold on one and two-particle 
states. For n-particle states this is also true provided one defines the action of Q and 
Q as 

do,-Z;::g ,,iI Ql~,ee)= X A(e i )a  I_  , e )  

QIT, e)= x i (0J-w 1: , e )  
< = I  

(3.4) 
-(d+l)r,-X;:im, u ( i )  

i=, 

where d is an integer 

u(( '=(u ,( . ._, u;&l,uj+l, Ui+l,. . . , U " )  

a(')= ( U , ,  , . . , L 7 - 1 ,  uj - 1 ,  Ui+l,. . . , U").  

(3.5) 

As, in the Z,-case (section 2) the two-body S-matrix will have the Z,-invariant form 

(3.6) 

We now require Q and 0 to be conserved. Therefore, they will have identical form 

S"'."' r , -K,r2+K(e)  = a ( ~ , ,  u2, K I 0). 

on in and out states. These conservations imply on the S-matrix the constraints 

~ a ( a z , u 2 - l r K , ~ )  - ( d + l ) ( o L + l + K )  - -w-(d+l)02-o a(uI, u2, K + 1, e)-w 
= ~ Z [ , , - ( d + l I o  - 1, u2, K + 1 ,  e )  

du,. UZ. Y 011 (3.7) - ( d + l l ( v 2 - K l - m , - K  - -w 

t It has recently been shown that there is no realization of ( 1 . 1 )  with s = 1 and N>J in penurbed unitav 
conformal invariant models [I  I]. The connection between ours = 1 construction and [ I  I ]  is to be investigated. 
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A ~ [ ~ ( u , ,  u2. K, e )  - W d ( o a - K ) - ( d + 3 ) o  w(u , ,  u2+ 1, K + 1, e) ]  
= o  -dK a ( u , + l ,  ~ ) - ~ - ( d + l l ( o , + K l - : + d ( ~ ~ - K - l l  

2 ,  

X a ( ~ i , ~ z , K + 1 , 0 )  (3.8) 

For N = 3 equations (3.7)-(3.8) become identical to (2.13)-(2.14). Equations (3.7)- 

(3.9) 

This means, in particular, that N must be odd, as we shall assume from now on, 

where A = = 

(3.8) admit a simple PT-invariant ansatz analogous to (2.15) when 

2d + 1 = N. 

for simplicity. Then, we can set as in the 2, case (2.15) 

a(u!;u2;  K; e ) = + ( u : + u 2 9  K; e). (3.10) 

Inserting (3.10) in (3.7)-(3.8) yields 

+ ( u , ~  e ) - o - d ( K - m l  + ( ~ - i , ~ - i , e )  

= , i ~ [ ~ - ~ ~ + ( u - l , K ,  O ) - W ~ ( ~ - ' )  +(U, K - 1, 0)l (3.11) 

and 

+ ( u , ~  e ) - W - d ( K + o )  +(u+I ,  K-1, e) 
= Ai[o-dKr$(u+l, K,  O)-o-d(m+l'+(u, K -1, e)] .  (3.12) 

Equation (3.12) follows from (3.11) together with P and C-invariance (see (2.10) 

!! is ce"vexie"t !O in!:oduce ED%' :he disc:ete Fo-:',er :r%sfG:m 
and (2.11)). 

+ ( ~ , K , e ) = o " ~ ~ ~ ~ ~ + ( a , K ,  0).  (3.13) 
m 

Inserting (3.13) in (3.11) yields the following recursion relation for $(a, K,  e )  

+(a, K,  0)  = (3.14) 

where we used 

in accordance with (3.1). 
We find from (3.14) 

This formula can be written in terms of the functions 

(3.16) 

(3.17) 
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Notice that these functions are real for purely imaginary 8. They enjoy the following 
properties 

x,(e)=x-,(e)=x,_,(e) (3.18) 

H J de Vega and V A Fateeu 

xo(e)= w ( O ) =  d - 1  n sin ( 2 ~ (  k2+;) + ie) 
k = O  

and 

1 sinh(O/2) 
2N-' sinh(B/2N)' 

w ( e ) w ( - e ) = -  

(3.19) 

(3.20) 

Using (3.17) we can write (3.16) as 

(3.21) 

Let us now enforce P or PT-invariance in order to fix + ( a , O ,  0). Equations (2.12a) 

(3.22) 

xK-e(e) 
+(a,o,  6) .  x,(e) +(a. K, e )  = 

and (3.13) yield, as the P-invariance constraint on +(a, K, e), 
+(a, K, e )  = +(U - K, -K, e). 

The solution (3.21) satisfies (3.22) provided 

+(a,% e ) =  ~ ~ ( e ) [ x , ( e ) l ~  (3.23) 

where F N ( 0 )  is an arbitrary function of 0. Therefore, the solution (3.21) takes the form 

$(a, K, e)=FN(e)x,(e)xK~,(e). (3.24) 

Let us now investigate the crossing symmetry of these amplitudes +(a, K, e). Crossing 
invariance (2.12) yields 

N-l N - 1  

2 o " " + ( a , K , i ~ - o ) =  x w K " + ( a , u , e ) .  (3.25) 
,X=0 o = o  

It is then convenient to define an additional finite Fourier transform 
N - l  

x(a, P, e )  = x w-~"+( . ,  K,  e). 
K=O 

Crossing thus requires 

X ( a ,  p, e )  = X ( p ,  a, i v -  e). 
Inserting now (3.24) in (3.26) yields 

K = O  

We can evaluate this sum with the help of the self-duality property [lo] 

N - I  X,(i.ir-O) N - ~  

k = O  Xo(iv-8)  k - 0  
x ok'xk(e)= x k ( e ) .  

Moreover, the sum in the RHS can be computed with the result 

(3.26) 

(3.27) 

(3.28) 

(3.29) 
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Then, we find 

(3.31) 

and 

X(a ,p .  e)=FN(B)v'Xw-"Bx,(e)xB(ir-e). (3.32) 

We recall that the weights in the Z,invariant model of [IO] are expressed as 
Z,-Fourier transforms of the functions X,(O). We find in the present case statistical 
weights that are double Z,Fourier transforms of (3.32). bilinear in the functions X,, (e). 

In order to impose crossing (equation (3.27)), we require FN(B) to be a crossing 
symmetric function 

FN ( e) = FN(im - e) (3.33) 

to' be determined by imposing unitarity and arbitrary. In conclusion, the C, T, P and 
crossing invariant S-matrix can be written as 

#(a, K,  e)=F,(s)x,(e)x,-,(e) (3.34) 

@(U, K,  e)=odCKFN(e)  x OJ"x,(s)xK_,(e) 

and (cf (3.13)) 
N-I 

(3.35) 
o = o  

where FN(B)  fulfils (3.33). 
It is easy to check real analyticity for @(U, K, 0) from (3.35). That is 

4 ( ~ ,  K,  e)*= +(U, K, -e*) (3.36) 

provided FN(8)* = FN(-O*). 
One can check that (3.35) fulfils the Yang-Baxter equations. 
Let us now consider the unitarity property of the S-matrix (3.35). It takes the form 

(3.37) x +(U, K, e)@(u', K ,  -e) = s,.. 
K 

We find from (3.35) setting U = U' 

The sum in (3.38) can easily be computed using 

I s inh(8/2Nj sinh(O/Z) 
Z N  ' sin2(mn/N)tsinhzt8/2N) 

x,(ejx,(-e) =- 

that generalizes (3.20). 
We find after calculation 

Using now equations (3.38) and (3.40) yields 

(3.38) 

(3.39) 

(3.40) 

(3.41) 
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It must be noticed that the identification of 0 with the physical rapidity (and hence 
the crossing transformation 0 + ia - e) is not unique. We can rescale w + w' and 8 -P sf3 
where the integer s is not a divisor of N. This changes the spin of Q and 0 to s/N. 

We shall discuss two cases in more detail: s = N - 2 and s = N - I .  Let us start by 
s = N-2. We call this case model I. We can write the S-matrix from equations (3.6), 
(3.10) and (3.35) 

N-l 

p = 0  
(3.42) S ~ + , - ~ + , , + ~ ( B ) =  o - M M  &v, K,  e ) = o r K F N ( e )  1 w-zmm2b(e)2K,_.(e) 

where 

2,,(e)=.n k = O  sin ( 27rk - + ~ O ) ~ ~ ~ s i n [ $ ( k + l ) - - - ( N - 2 )  i(N-2) 2 N  ie 1 , (3.43) 

The unitarization function FN(8) obeys here 
N - 2  

cosh ( 2 ~  e) 

cosh (7 8) 
FN(e)FN(-e)=- N ' [  Z N - ~  N-2 ] (3.44) 

(3.45) 

Notice that FN(f3)  cannot be obtained by rescaling 8 in FN(B)  since crossing always 
contains an i a  shift [cf (3.33), (3.41), (3.44) and (3.491. 

In order to solve the functional equations (3.44) and (3.45) it is convenient to write 

F N ( e ) = X  [ . ? N ( ~ ) I ' B N ( ~ )  (3.46) 
2N-' 

where 
cosh( 2~ N-2 8) 

. f N ( e ) . f N ( - e ) =  \ and . fN(f3)  =fN(ia-O). (3.47) 
c o s h \ y  0) 

Using the identity (2.27), we can write (3.47) as 
. i N ( e V N ( - e )  = +(e)+(-s) (3.48) 

where 

(3.49) 

is analytic for Im e> -a / (N-Z) .  

obtained with the result 

- 
in an anaiogous way to section 2, an infinite product soiution ior f N ( 6 )  can be 

(3.50) 
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N-1 
m 

?,(e)= n 

z I N - 2  r - - + - + - ( m + l )  
( N 2  N 

(3.51) 

where z -  ( N  - 2 ) 0 / ( 2 ~ i ) .  
In (3.51) the infinite product of r-functions has no zero neither poles in the physical 

strip. Poles and zeros are on the pole factor (the sinh functions). We choose this pole 
factor BN(!3) to be one associated with the bound-state mass spectrum 

2 '  
(3.52) 

These bound states plus the mass m particle coincides with the B N - , , 2  spectrum. 
The interpretation o i  this &matrix as describing a perturbed CFT is given in the next 
section. 

Let us now discuss the S-matrix obtained from (3.35) through the rescaling 

0 + ( N  - I ) O  + W N - ' =  (3.53) 

We call this case, model 11. 
For model I1 we add an extra quantum number E = f to characterize the particle 

states. As in section 2, the reason for introducing is to allow QN (a Z,-invariant 
operator with even spin) to be odd under charge conjugation. 

Thus, our asymptotic states will now be 

I E I U l O , ,  E2U2O2,. . . , ENUNO,) E , = * ] .  (3.54) 
- 

T i e  Z, charges, Q and Q are diagonai on the E indices and act as Foiiows on one 
and two particle states 

Q l e d )  = &Ay"la, u + l ,  0) 

(3.55) 

Analogous formulae hold for and for states with more particles. 
The conservation of Q and Q constrains the two-particle S-matrix to have the form 

r *  e "  S&;:&:(a = ",+"~,,,,+.,~S,,,,,S.,,,,~(u,+u2I, U I - U ~ ,  EI&Z. 8). (3.56) 

We have two separate sectors depending whether E , E ~ = ~ + I  or -1 .  In the +1  
sector we set 

@(U, K ,  +, 0)  =&U, K ,  O ) l ' , ( O )  (3.57) 
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N - l  

&a,K, O ) = o - d " K  1 o-"X,(( 1 - N)8)XK_,(( 1 - N)8) (3.58) 
0 - 0  

and the functions X,(+) are given by (3.17). 
In the sector E I E 2  = -1, we set 

(3.59) 
N-1 

@(a, K ,  -, 8 )  = f iN( i r -  8j$( a, K ,  8-- 

It can be checked that equations (3.57)-(3.59) are invariant under Q and 6. 
Crossing invariance requires here that 

@ ( a , K , ~ , e ) = @ ( K , u , - - - ~ , i a - O ) .  (3.60) 

Using now equations (3.23), (3.24) and (3.56) we find that 

(3.61) 

This, together with equations (3.57) and (3.59) shows that crossing invariance (3.60) 
holds 

Let us finally find the unitanzation factor kN(8j. We find two equations from the 
sector E , E ~ = + ~  and E , E ? = - ~ .  (respectively: 

N-1 
2N-' cosh (F 8) 

cosh(--j- 8 )  
SN(o)SN(-e) =- N ' [  N-1 ] 

2N-' sinh( 2~ N-1 8) 

SN(i?r- e)SN(i7i+ e) =- 'I N - l  ] 
s i n h ( F 8 )  

Proceeding as earlier ((3.46)-(3.52)), we set 

(3.62) 

(3.63) 

(3.64) 

(3.65) 

and 

N-1 
2 N r i  

2'- e. 
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The solution of equations (3.64) can be expressed as the following infinite product: 

sinh(!+ 
i h  ) 

&(e)=  n sinh(!- iln ) 
2 2(N-1) N-2 

2 2 (N-1)  

r(f+Nz+(N-l)k)r(-Nz+(k+f)(N-l))I'(f+(N-l)(k+l)) 
io r (f - Nz + ( N  - 1)( k +  1)) ( N z  + ( k +  f )  ( N  - 1)) I- (f + ( N  - 1 ) k )  

(3.66) 

We introduced as pole factor the one associated to a D,-spectrum. That is, model 
I1 contains, besides the particle of mass m, N - 2  bound-states with masses 

(3.67) 
nk 

mk = 2m sin 1 s k s  N - 2 .  
2(N-1)  

4. Perturbed parafermionic conformal field theories as integrable massive field theories 

In this section we investigate integrable perturbations of parafermionic CFT leading to 
massive integrable field theories. Their associated S-matrices being found in section 3. 

Let us start with model 1. We claim that this QFT follows from two parafermionic 
ZN models perturbed by the product of the thermal operators of both models. That 
is, a scaling model described by the Hamiltonian 

(4.1) 

where ZN and ZL refers to the two parafermionic CFT and E ~ ( E ; )  is the Z,-neutral 
field in the ZN(ZL) model with conformal dimensions [9] 

- L  
D , = D  -- (4.2) ' - N + 2 '  

In equations (4.1) h+O is a (small) parameter. We find by dimensional analysis 
dim A = 2(N-2) / (N+2) .  Therefore, the correlation length behaves here as 

(4.3) 6 - ~ - i N + 2 ) / 2 i N - 2 )  

Moreover, we identify the conserved ZN-charge Q with the operator 

(4.4) 

where +,(+:) is the parafermionic field of the model ZN(ZL)  with conformal 
dimensions 

& = O .  (4.5) 
1 

A , = I - -  
N 
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As is easy to check, the identification (4.4) is consistent with the value S = 1 - 2 / N  

In the massive theory (4.1) $,$; depends both on z and i and we assume it is the 

a , [ w ; l =  A a z @  (4.6) 
where @ should be a local operator. Dimensional counting yields from equations (4.3), 
(4.5) and (4.6) 

for the charge Q (see section 3). 

z component of a conserved current. We therefore set 

N - 2  
N ( N + 2 )  

A+=2  

& = 2  (Nyi:2) +’) N 
(4.7) 

These are precisely the conformal dimensions of the operator @&(z, 2) in the Z, 
parafermionic c m  [9]. These operators are obtained from the other parameters 
uk(z ,  i) by applying the operator A, (see [9]). In our case: 

(4.8) 
(We recall that the conformal dimension of u2 are d , =  & =  ( N  - 2 ) / N ( N + 2 ) . )  That 
is we set 

(4.9) 
where C, is some numerical constant. These arguments prove that our claim is con- 
sistent. 

Let us now consider model 11. We identify it with two parafermionic Z,, CFT 
pertxbed bg the prodxt of the :herz-a! opera:=: i:: bath zxde!s. %.a: is, 

@(2) -+ 
r2,oi(z. ~ ) = A - I I N ~ T ~ ( ~ ,  i). 

@I(z, 2 ’ )  = c , W d z ,  z)@&(z, i) 

r 

%“:‘=X,,(Z2N)+%o(Z~N)+A d2xEIE;. (4.10) J 
Now, dimensional analysis yields dim A = 2( N - 1)/( N +  1) and hence 

5 -  h-N+II2(N-2)  (4.11) 

We identify the Z,-charge in model I1 with 

Q =  dz$,$;+A I (4.12) 

where now the 2, and Z‘, parafermionic operator have conformal dimensions 

A,=l--!-  &=O. 
2 N  

This is consistent with the spin value 1 - 1/  N for Q in model 11. 
We find as the conserved current in the Z,,OZ;, perturbed model (4.10) 

J J $ t $ \ I  = A J z @ , ,  

where 

@II(Z, a = c,,@;:!”l@;:!& 

(4.13) 

(4.14) 

where C , ,  is a number and @&(z, Z) is the same operator as in (4.8) but now in the 
Z,,-parafermionic theory. 
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In  model 11, where s = N - 1, the local operator P, = Q N  can be represented in 
terms of operators of the Z, ,  parafermionic CFT as 

(4.15) 

where K is a numerical constant and the operators @/:)N.,,] defined in [9] have conformal 
dimensions 

N(N-1) 1 
and =- 

N+1' 
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